Catalysis by framework zinc in silica-based molecular sieves

نویسنده

  • Mark E. Davis
چکیده

Microporous and mesoporous zincosilicates (e.g., CIT-6, VPI-8, Zn-MFI, and Zn-MCM-41) synthesized in the presence of alkali cations contain two broad types of Zn sites: one that is a dication analog of the monocation ion-exchangeable Al-site in aluminosilicates, while the other resembles isolated Zn sites on amorphous silica. The ratio of these sites varies, depending on the synthesis conditions of the zincosilicate. Post-synthetic strategies based on ion-exchange can alter the site distribution towards either population. Furthermore, post-synthetic introduction of isolated Zn sites of the latter type is possible for materials possessing silanol nests. Both types of sites behave as Lewis acid centers in probemolecule IR spectroscopy, but have very different catalytic properties. Due to the unusually high adsorption energies of Lewis bases on such materials, Lewis acid catalysis is difficult at low temperatures and in solvents bearing Lewis basic functionality. However, at high temperatures, in hydrocarbon solvents, CIT-6 (Zn-beta) is able to selectively catalyze the Lewis-acid-catalyzed Diels–Alder cycloaddition–dehydration reactions of ethylene with methyl 5-(methoxymethyl)furan-2-carboxylate, a furan that can be derived quantitatively by partial oxidation of biomass-based 5-hydroxymethylfurfural. Additionally, zinc in silica-based molecular sieves is shown here to enable chemistries previously not accessible with framework Sn-, Tiand Zr-based Lewis acid sites, e.g., the direct production of dimethyl terephthalate by Diels–Alder cycloaddition–dehydration reactions of ethylene and the dimethyl ester of furan-2,5-dicarboxilic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymatic Synthesis of Butyl Ferulate by Silica-Immobilized Lipase in a Non-Aqueous Medium

Butyl ferulate was synthesized using a silica-immobilized commercial lipase (Steapsin) in dimethylsulfoxide (DMSO). Lipase-immobilized by surface adsorption onto silica pretreated with 1% glutaraldehyde showed 89% binding of protein. The esterification of butanol (100 mM) and ferulic acid (50 mM) by silica-bound biocatalyst was carried out at 45 ̊C for 6 h under shaking (120 rpm). The optimizati...

متن کامل

Progress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides

Mesoporous silica molecular sieves are a kind of unique catalyst support due to their large pore size and high surface area. Several methods have been developed to immobilize heteropolyacids (HPAs) inside the channels of these mesoporous silicas. The mesoporous silica-supported HPA materials have been widely used as recyclable catalysts in heterogeneous systems. They have shown high catalytic a...

متن کامل

The kinetic parameters of drug compounds adsorption onto mesoporous materials

The discovery of mesoporous molecular sieves, MCM-41, which possesses a regular hexagonalarray of uniform pore openings, aroused a worldwide resurgence in this field. This is not onlybecause it has brought about a series of novel mesoporous materials with various compositionswhich may find applications in catalysis, adsorption, and guest-host chemistry, but also it hasopened a new avenue for cr...

متن کامل

Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

Percolation diffusion into long (11.5 cm) self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS). Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm²∙s-¹) of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP) obs...

متن کامل

Templated Growth of Carbon Nanotubes on Nickel Loaded Mesoporous MCM-41 and MCM-48 Molecular Sieves

Chemical vapor deposition was employed to synthesize carbon nanotubes with Ni-loaded MCM-41 and MCM-48 as catalysts and acetylene as precursor at 750°C. Mesoporous Ni MCM-41 and Ni MCM-48 molecular sieves were synthesized by a hydrothermal method and were characterized by XRD and N2 adsorption isotherm. The catalytically synthesized carbon materials were characterized with Raman spectroscopy, N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016